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This is an opinion article.

The author cites sources to create a case
for his argument.

However, inferences are made that might
not be made in a typical literature review.



What is the slot model?

The idea that visual working memory
(herein referred to as “VWM”*) consists
of 3—4 “slots” that can only represent a

single visual object (p. 431).



* Bays uses “WM” as his abbreviation,
but | prefer “VWM” as a constant
reminder that we are talking about visual
working memory rather than working
memory in general. Luck & Vogel (2013)
use “VWM” as their abbreviation.
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Image source: Super Mario 64 (1996 video game) “select file” screen.



https://www.google.com/search?tbm=isch&q=super+mario+64+save+files
https://www.google.com/search?tbm=isch&q=super+mario+64+save+files
http://www.vizzed.com/play/super-mario-64-wacky-worlds-(v10)-n64-online-nintendo-64-37123-user-screenshots

What are spikes?

» Spikes are the firing of neurons.
* Their timing is probabilistic, roughly like
the Poisson distribution.

* Recalling a VWM item requires enough
spikes in the correct neurons (p. 432).



Deterministic Mechanism / Limit

* A “fixed maximum number of
representations that can be held in
memory at one time” (p. 431).

* Or: Hard limit, ceiling, upper bound

* Encompasses the slot model and similar
models.



Implications of the Deterministic Model

* Represents a “hard limit” on VWM objects

* If more items must be remembered than
slots available, some must be discarded



Implications of the Deterministic Model

*Recall accuracy should have an “abrupt
discontinuity” (p. 432) when the
deterministic limit is exceeded.

* However, Bays presents evidence that this
abrupt discontinuity does not exist.



“Stochastic”

“Randomly determined; having a random
probability distribution or pattern that
may be analyzed statistically but may not
be predicted precisely.”

SOURCE: Oxford Dictionary (U.S. English)



http://www.oxforddictionaries.com/definition/american_english/stochastic

Stochastic Mechanism / Model
Or: Resource Model, Continuous Model

“Representations in memory becoming
increasingly variable as their number
increases,” until they approach random noise

(p. 431).



Image source: Wikipedia / public domain:
http://en.wikipedia.org/wiki/File:TV noise.jpg



https://en.wikipedia.org/wiki/File:TV_noise.jpg
https://en.wikipedia.org/wiki/File:TV_noise.jpg
http://en.wikipedia.org/wiki/File:TV_noise.jpg

Key data for Bays’ argument comes from
analog recall tasks, where the subject
must give a continuous (not multiple

choice) response, such as turning a dial
or selecting a color off a color wheel.
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Figure 1. Errors in working memory (WM) reflect noise in neural coding. (A) An analogue report task, in which participants adjust a probe stimulus to match the orientation
recalled at the same location in the memory array. (B) The distribution of responses around the true orientation changes as a function of the number of items in the memory
array. (C) Error variability (black) increases monotonically with the number of array items. Curves show predictions of the population coding model (red; [28]) and slots +
averaging model (blue; [27]) with best-fitting parameters. (D) Kurtosis (black) measures deviations from normality of error distributions. Curves as in (C). (E) The population
coding model. Each stimulus is encoded by a set of orientation-selective neurons with bell-shaped (normal) tuning functions. Normalisation operates across the whole
population, scaling summed activity to a fixed level. Neurons generate spikes according to a noisy Poisson process, and recall is modelled as maximum likelihood (ML)
decoding of the spiking activity over a fixed time window. (F) Error distributions predicted by the population coding model with ML parameters (compare with B). Adapted
and reprinted from [28], with permission from the Society for Neuroscience.



As set size increases in the response dial
task [data shown for n ={1, 2, 4, 8}],
variability increases steadily. Accuracy
degrades gradually, not abruptly as the
slot model suggests.
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VWM error distributions do not match
the normal distribution—they have more
kurtosis.

Therefore, assuming the noise is normally
distributed or indicative of “guessing”
may be incorrect (p. 432).



(C) (D)
Key:

: Pop. coding

Slots+averaging

Variance
Kurtosis

Figure 1-C: Log—log axes indicating that variance should increase
monotonically with array size (p. 432).

Figure 1-D: Kurtosis from actual experiments is non-normal.



Recall that Brady, Konkle, & Alvarez
(2011) argued slots are fungible (p. 4)—
for instance, all the slots can be
dedicated to one item to represent it
with increased fidelity.

Does Bays (2015) consider this?



Yes.

Bays cites the “slots + averaging” model
(p. 432—-33), which proposes that 2 or
more slots can contain independent
representations of the same visual item.
These slots are “averaged” to reconstruct
the image more accurately.



Bays contends that, like the traditional
slots model, the slots + averaging model
fails to replicate the kurtosis found in
actual data (p. 433), especially for a small
number of items, including one item.



Population Coding

A pool of neurons shares encoding of an
item. “Common throughout the nervous
system, including visual cortex” (p. 433) —
robust, because any one neuron can fail with
little impact.

Redundancy — I think of this like a RAID 5 or
RAID 6 array of hard disk drives.



Box 1. Population coding

Population coding is a method of encoding information in the com-
bined activity of a pool of neurons [61,62]. The firing rate of each
neuron is determined by a tuning function (Figure IA) with a peak at a
‘preferred’ value that differs from neuron to neuron. This coding
strategy is common throughout the nervous system, including visual
cortex, where the encoded values are stimulus features such as
orientation, and motor cortex, where values correspond to motor
outputs such as an intended movement direction [63,64].
Population coding has the advantage that it is robust: because the
encoded information is distributed over many neurons, damage to
any one neuron has relatively little effect on the representation.
Theoretical schemes have been proposed whereby population codes
can store multiple inputs and represent uncertainty in the input
[65,66]. Methods also exist by which information in a population
code can persist over time (Box 2), and persistent activity associated
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with WM in cortex, for example in prefrontal neurons, exhibits po-
pulation coding [67].

Neural firing is probabilistic, thus information encoded by neurons
can in general only be recovered imperfectly; because outputs can be
averaged over many neurons, population codes help reduce this
uncertainty. A particularly important method of decoding, which is
in many situations statistically optimal, is maximum likelihood (ML).
ML decoding [68] consists of identifying the represented value for
which the observed activity was most likely to occur. This is also the
value at the peak of an idealised (noiseless) response function that best
fits the observed firing rates (Figure IB). Biologically plausible methods
have been identified for obtaining ML estimates from population
codes [69,70]. However, it is unclear whether decoding takes place
explicitly in the brain, or is only implicit in the transformation between
variables, for example, from sensory to motor coordinates [71].
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Figure |. Standard model of population coding. (A) The mean activity of a neuron in response to an input (e.g., the orientation of a visual stimulus) is determined by its
tuning function, which is typically bell shaped. Neurons within a population differ in their preferred stimulus value, that is, the value that elicits their maximum firing
rate. (B) Population activity (black filled dots) plotted against the preferred stimulus value of each neuron. In any finite time period, the spike rate will be a noisy
approximation to the idealised value set by the tuning function. Maximum likelihood finds the idealised output (blue curve) that most closely fits the actual activity [61].



What does population coding do?

It [imits spiking via normalization and
distribution among visual items, giving a
“plausible biological basis” for VWM as a

limited resource (p. 432).



Population coding is provided as
neurophysiological evidence to
support the author’s position, as is
normalization, diffusion, and
accumulation to bound (p. 437).



Normalization (p. 433-34)

“Explains why variability increases with the
number of items” (p. 433).

New fMRI evidence suggests this is a broad
phenomenon that occurs across many stimuli
at once, and even across multiple brain
regions (p. 434).
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Figure 2. Evidence for normalisation in working memory (WM)-related neural activity. (A) Firing rate of an example prefrontal neuron with persistent WM activity. Firing
rate declines with increasing memory load, whether the stimulus in the receptive field corresponds to a preferred (unbroken lines) or non-preferred (broken lines) feature of
the neuron. (B) Correspondingly, the information about a stimulus that can be extracted from delay-period neural activity declines as the number of items increases,
consistent with normalisation. (A,B) Adapted and reprinted from [22], with permission from the National Academy of Sciences. Data shown are for lateral prefrontal cortex
(LPFC); similar results were found in frontal eye field (FEF) and lateral intraparietal (LIP) areas. Note that significant differences between two and three items were observed
only in the late phase of the delay in the LPFC; however, this was not a consistent observation across brain areas. (C) An fMRI study [24] decoded signals recorded during a
spatial WM task (top row). When participants were instructed to remember the location of one of two stimuli, strong delay-period activity was observed corresponding to
the remembered stimulus location only (middle row). When both stimuli were to be remembered, activity was observed corresponding to both locations, but with

significantly reduced amplitude at each. Adapted and reprinted from [24], with permission from Elsevier. Data shown are from area V4A; similar results were found
throughout visual and posterior parietal cortex.



Decay (p. 434-35)

e VWM items become less accurate the
longer they are maintained.

* More items to remember => faster decay

* “Cueing” an item helps to preserve it, but
other items decay faster



The Attractor Model (p. 434-35)

A possible neurophysiological explanation for
decay:

* A neural circuit that sustains patterns

* |t seems it diffuses over time, rather than
declining in amplitude



Box 2. Attractor models

An attractor network [72,73] is a neural circuit for which certain
patterns of activity are stable and self-sustaining. Regardless of
how the network is initialised, activity will settle into one of these
stable patterns or ‘attractor states’. Such behaviour arises naturally in
computational models of networks with recurrent excitation and is
considered a possible basis for persistent activity underlying WM.

A discrete attractor network [74,75] has one or more fixed points of
attraction (Figure |A). Such a network can maintain the memory of a
categorical variable, with each fixed point corresponding to a differ-
ent discrete value (e.g., a letter of the alphabet). Discrete attractor
networks can carry out a type of pattern completion: if the network is
initialised with aninput that does notcorrespond exactly to one of the
categories, the activity will shift to the nearest stable state corre-
sponding to the closest-matching category.

Continuous attractor models [76-78] extend this principle to net-
works with a continuum of attractor states. For example, memory for
a continuous variable such as orientation can be stored in a ‘ring
attractor’ network (Figure IB), where every possible orientation cor-
responds to a different point on the ring of stable states. Similar to
discrete attractors, these networks are relatively resistant to internal
noise, in that the system rapidly corrects for perturbations away from
the attractor line. However, perturbations along the attractor are not
corrected, making the network susceptible to random drift (‘diffu-
sion’) in its stored variable.
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Figure |. Attractor networks. (A) Energy landscape and state-space representation
of a discrete attractor network with two fixed points (red dots). Here, two state
variables (x and y axes) stand in for the high-dimensional state of activity in the
network. Activity evolves over time (arrows) to settle in the nearest of the fixed
attractor states. (B) Representation of a ring attractor network. Activity is stable
anywhere on the continuum of attractor states (red line).
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Figure l. Attractor networks. (A) Energy landscape and state-space representation
of a discrete attractor network with two fixed points (red dots). Here, two state
variables (x and y axes) stand in for the high-dimensional state of activity in the
network. Activity evolves over time (arrows) to settle in the nearest of the fixed
attractor states. (B) Representation of a ring attractor network. Activity is stable
anywhere on the continuum of attractor states (red line).




The Attractor Model (cont.)

This is the main issue that Bays identifies
with using this as a model of VWM:

The normalized attractor model does not
work with analog recall tasks such as
recalling two similar colors; two similar
stimuli simply merge in this model (p. 435).



Recall Latency (p. 435)

 As the number of VWM items increases,
latency increases

*A strongly skewed distribution
* Decay continues even during retrieval

*Like an accumulation process—reaches a
“threshold” where the stimulus can be
retrieved (p. 435).



Binding Errors (p. 435—-37)

e Occur when visual features are bound to the
wrong objects

* Result in inaccurate recall of what was seen
* Uncommon in perception; common in VWM
* Might arise because spike timing is stochastic
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Figure 3. Models of binding and misbinding in working memory (WM). {A) Binding by synchrony. Neurons in two brain regions synchronise their activity to a common
waveform (e.g., theta rhythm) in order to store in memory (inset) a red horizontal bar and a green oblique bar. A red-selective neuron in colour region 1 fires spikes in the
same phase as a horizontal-selective neuron in orientation region 2; likewise, activity of a green-selective neuron is matched with an oblique-selective neuron. Spike timing
is probabilistic, and errors of binding (e.g., recall of a green horizontal bar) arise from mistimed spikes. (B) Binding by conjunction. Stimulus information is stored in the
activity of a mixed population of neurons, comprising colour-selective neurons (response fields shown top-left), orientation-selective neurons (top-right), and conjunction
neurons that are activated only by a specific pairing of colour and orientation (bottom-left). Optimal decoding of the population activity recovers the stimulus values and
their binding (decoding probability shown bottom-right). Misbinding occurs probabilistically because of noise in firing rate.
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Binding Errors (cont.)

Bays’ argument: Because binding errors can
only occur between items in memory, if there
is a “hard” limit on VWM like slot models
propose, then binding errors should reach a
plateau once that limit is exceeded.

However, binding errors continue to increase.



Overview

Bays overall argument, mentioned in the
abstract, is that VWM is a continuous
resource that degrades gracefully, rather
than a discrete resource that degrades
spectacularly.

Similar to an analog versus digital dichotomy



Overview (cont.)

“Currently, no model incorporating a
deterministic limit has been shown to
reproduce the characteristic deviations from
normality observed in [VWM] errors, and this

is an important challenge for proponents of
this view” (p. 433).



Discussion

Luck & Vogel (2013) reference a study
finding that subjects cannot “trade

precision for capacity” even when money
was offered (p. 396)!
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Discussion (cont.)

Luck & Vogel (2013) do not address Bays’
(2015) kurtosis / abnormality argument,
but a response may be forthcoming.

Is kurtosis the foundation for Bays’
argument?

If so, is it a weak foundation?
Is this a loaded question?



Discussion (cont.)

What do you think? Is visual working

memory best characterized by a slot

model? Perhaps there should just be
more slots (i.e. 6 instead of 3—4)?

Is the resource / stochastic model
superior, as Bay contends?



Your PC ran into a problem and needs to restart. We're just
collecting some error info, and then we'll restart for you. (0%
complete)

If you'd like to know more, you can search online later for this error: HAL INITIALIZATION FAILED

Oh no! I ran out of slotsl



https://en.wikipedia.org/wiki/Blue_Screen_of_Death
https://en.wikipedia.org/wiki/Blue_Screen_of_Death

Discussion (cont.)

Is Bays being biased?
What about Luck & Vogel?
s this factionalism (or partisanship)?

If so, is it aiding or hindering scientific
progress in this area?



Discussion (cont.)

Who thinks a more accurate model may
be a mix of both models?

Which elements from each model might
be supported or unsupported?



Box 3. Outstanding questions

How can the stochastic view of WM be extended to memoranda
that are categorical in nature, for example, letters, shapes, or high-
level objects? Can discrete attractor networks (Box 2) provide a
useful description?

How are time intervals and the temporal order of events repre-
sented in WM?

Can the population coding model of visual WM be adapted for
other modalities, for example, tactile or auditory WM?

Are there limits on flexible allocation? A system based on binary
spiking events could be practically limited in how finely activity can
be distributed between representations. Furthermore, under cer-
tain conditions it may be statistically optimal to limit allocation to a
subset of available items, rather than store all with very low
precision. Such effects might be captured by a stochastic upper
bound, as in [54].

What is the neurophysiological basis for the representation in WM
of ensemble statistics [79], such as the average colour of a group of
objects?

What is the mechanism underlying the broad normalisation ob-
served in WM-related activity, and how is it distinct from those
proposed for perception and attention [33]? Possible mechanisms
include lateral inhibition within posterior areas, or a resource-
limited descending signal from, for example, prefrontal cortex.



In conclusion, Bays concedes that the
connections between behavioral
observations and neurophysiology are
speculative and theoretical—further
research is required (p. 437).
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